Cryonics Revival Scenarios & Potential Roadmaps & Hypotheses

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Innovative 3D-printed implants and bioluminescent tools transform sensory process studies

Published in Scanners and Imaging, Tech News.

A sensory process such as pain is no ordinary phenomenon-;it’s a symphony of neural and vascular interactions orchestrated by the brain and spinal cord. Attempting to dissect this symphony by focusing on a single region is like trying to understand a complex melody by listening to just one instrument. It’s incomplete, potentially misleading, and may result in erroneous conclusions.

Enter the Carney Institute’s team of visionaries. Their mission? To develop tools that allow unprecedented observation of neural and vascular activity within the brain and spinal cord. They tackled two critical fronts: imaging hardware and bioluminescent (BL) molecular tools.

Innovative imaging hardware

Multi-organ imaging during clinically relevant sensory processes is notoriously challenging. As a result, until now there were no methodological protocols and tools that would offer any guidelines on how to go about imaging multiple sites during clinically relevant sensory behaviors. As reported in Neurophotonics, the team engineered 3D-printed brain and spinal cord implants, revolutionizing surgical implantations and optical access.

Wearable miniscopes coupled with universal implants for advanced microscopy or optogenetic stimulation now provide a backstage pass to the brain and spinal cord.

Bioluminescent imaging

BL imaging overcomes limitations of more traditional fluorescent microscopy. No more photobleaching, phototoxicity, or resolution loss due to scattered excitation signals.

https://www.news-medical.net/news/20240521/Innovative-3D-printed-implants-and-bioluminescent-tools-transform-sensory-process-studies.aspx